
Continuous-time random walk of a rigid triangle

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys. A: Math. Gen. 28 6645

(http://iopscience.iop.org/0305-4470/28/23/016)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 00:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/28/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A Math. Gen. 28 (1993 6645-6653. Printed in the UK 

Continuous-time random waIk of a rigid triangIe 
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Abstract We study as an example of a continuous-time random walk (CTRW) scheme under 
holonomic contrains the motion of a rigid triangle, moving on a plane by fips of its vertices. 
This interpolates between our former model of a dumbbell (WO walken joined by a fixed 
segment) and the OrwollStockmeyer model for polymer diffusion. The jumps of the vertices 
follow either Poissonian or power-law waiting-time distributions. and each vertex follows its 
own intemd clock. Numerical simulations of the triangle’s centre-of-mass motion show it to be 
diffusive at shorl and also at long times, with a broad crossover (subdiffusive) region in between. 
Furthermore, we provide approximate expressions for the long-time regime and generalize ow 
findings for systems of N random walkers. 

1. Introduction 

Many physical situations correspond to a set of random walkers which move under 
constraints. A typical example is a polymer. Thus the OrwollStockmeyer model [1,2] 
pictures a macromolecular chain as a set of beads (walkers), connected to each other by 
rigid bonds. The chain moves by flips of the beads. In a previous work [3] we have 
considered the special case of a dumbbell, i.e. a rod-like molecule whose ends perform 
random motions, constrained by the fixed length of the rod. One may also envisage a 
more complicated situation, such as an oligomer in a viscous solution., In  all these cases 
the rigidity of the bonds represents holonomic constraints. In the theory of glasses one 
encounters tunnel processes, which involve correlated motions of large clusters of atoms; 
here is again a situation whose constraints may be viewed as holonomic, although the 
geometrical factors involved may correspond to rather complex functional forms. 

Now the random walkers may perform their jumps according to a fixed (discrete) 
frequency or, in the continuum, according to a simple exponential waiting-time density 
(WTD); this corresponds to a Poisson process. In general, for Poisson processes the spatial 
and the temporal aspects of the problem decouple. A much more interesting (and physically 
relevant) situation takes place when the jumps of the walkers follow more complex WTDS. 

A physical background is found in dense solutions or in melts, when a ,  walker can move 
only when it has enough free volume at its disposal. This leads to the Glanun model [4] 
and to continuous-time random walks (CTRW) [5-111. If the free volume is the result of 
a vacancy moving randomly, then the~corresponding WTD follows a power-law. In some 
cases, even for WTD with long-time tails the spatial and temporal aspects of these processes 
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may still decouple, which then allows the situation to be depicted in an elegant way, see 
[7,81 for discussions. In the case that the random walkers are coupled through geometric 
correlations introduced by constraints (say for Orwoll-Stockmeyer polymers [I21 or for 
dumbbells performing walks by flipping along a line [3]) the memory effects inherent in 
the power-law WTDs show up, and the overall behaviour is much richer. We also mention 
that models of coupled continuous time processes may be of interest in many areas, such 
as, say, in the theory of random noises, when describing the response of some appliance to 
correlated sequences of pulses arriving at its different entrances. 

In our previous work [3] we considered the motion of a rigid dumbbell (consisting of 
two beads connected by a segment), which diffuses along a line by performing flips. The 
flips are caused by the jumps of the beads; the jumping times of each bead are independent 
of the others and follow a given WTD. We have shown that under geometrical constraints and 
broad WTD the spatial and temporal aspects of the dumbbell’s motion are strongly coupled. 
Thus the overall motion of the dumbbell’s centre of mass (CM) resembles that of a ploymer, 
in that two very distinct diffusion regimes at very short and at long times are separated by 
a wide crossover region of subdiffusive motion in between. 

Now, the one-dimensional character of the dumbbell’s motion simplifies the problem 
considerably and also leads to some features that do not persist in higher dimensions. 
Moreover, the presence of only two walkers (the two ends of the dumbbell) renders the 
problem somewhat degenerate, in the sense that it does not allow to distinguish between 
jump clnsterization and pinning effects (vide infra). Therefore it is interesting to consider 
the generalization of this type of motion for higher dimensions and for a larger number 
of walkers involved. In this article we focus mainly on the motion in two dimensions, 
by considering the diffusion of a rigid equilateral triangle of sidelength c, whose vertices 
move. When one vertex jumps, the triangle flips around the side whose two vertices are 
at rest. Each vertex jumps independently of the other ones, always following its own 
internal clock (WTD). In the following we investigate first the motion of the triangle’s CM 
via numerical simulations and then provide analytical approximations for the long-time 
diffusion coefficients. In the case of power-law WTD, the numerical simulations show that 
the triangle’s centre of mass moves diffusively at short and also at long times, with a broad 
cross-over region in between. The reason for this is pinning: there is no overall translation 
unless all three vertices jump. We close by discussing similarities and differences between 
the behaviour of a triangle’s random walk and that of a segment or of a chain molecule; 
this throws light on the statistical nature of correlated, non-Markovian stochastic processes. 

I M Sokolov et a1 

2. The model 

As mentioned in section 1, we analyse the motion of a rigid triangle, which moves by 
jumps of its vertices. A jump consists of’ihe flip of a vertex around the opposite side, while 
keeping the two other vertices fixed. The triangle’s CM moves at each jump over a distance 
a = c f d .  For simplicity we set c = f i  so that a = 1. The overall motion of the CM is 
then a random walk performed on a hexagonal lattice of unit sidelength, see figure 1. 

The jumps occur in continuous~time; so that we now introduce @(t), the waiting-time 
density (WTD) between the jumps of the same vertex, the jumps of distinct vertices being 
uncorrelated. We focus on processes which are homogeneous in time, and hence correspond 
to equilibrium renewal processes (RP) [13]. We distinguish between WTDs of exponential 
type 
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Figure 1. Displacements of the miangle starting with a jump of vertex 1. The triangle's CM 
performs a mndom walk on a twwdimensional hexgonal lattice indicated through broken curves. 
Ail sites (dots) which can be reached by the CM within one step of vertex 1 are also shown, see 
text for details. 

which lead to Poisson processes and between WTD with long-time tails. As a suitable form 
for the' latter we choose 

with y > 1. The YV& (2) is well defined for all times t 2 0 and behaves algebraically, 
@(t) cx y / tY+' ,  for t  large. 

Equilibrium RP correspond to a situation in which all vertices have started their motion 
long ago, before the beginning of the observations at f = 0. In this caes the WTD for~the 
first jump of each vertex after t = 0, @ ~ ( f ) ,  may have a different form from the WTD for 
all subsequent jumps, @(t). 

Let ( t )  denote the mean waiting time between jumps: ( t )  equals I lh  for the exponential 
WTD, equation (1) and I / ( y  - 1) for the long-time tailed WTD, equation (2). Furthermore, 
the survival probability c$(t), i.e. the probability that up to a time f after the last jump no 
further jump occurred, equals 

@(t) = y ( l  +r)-l-" (2) 

m 

W) = dt'@(t'). (3) 

Now 
terms of + ( t )  and ( t )  is given by: 

coincides with the equilibrium forward waiting time density [13,14], and in 

@l(t) = c$(O/(t). (4) 
One verifies now readily that for the exponential WTD @ ( t )  and 
WTDs of the type of equation (2) 

are identical. For 
( t )  is given by 

Tb1(r) = ( y  - i)(i + t j - Y  (5) 
and hence differs from @(t). 

3. Simulation results 

Our numerical simulations of the triangle's motion are quite straightforward. For each 
realization of the motion we compute first the times between jumps for each of the three 
vertices. We do this for each vertex separately, by listing the times at which the vertex 
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jumps, such that the first jump follows the distribution @I@) and the waiting times for 
following jumps the distribution @(t) .  This leads to three separate lists. Then we order all 
jumps in a single list, in ascending order, and move the triangle according to this list. We 
store both the times and the coordinates of the triangle’s CM after each jump, thus obtaining 
a trajectory of the triangle’s motion. Some los to 106 such trajectories were generated for 
each choice of the WTD; such numbers were deemed necessary, in order to get statistically 
consistent results. 

I M Sokolov er a1 
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Figure 2. Mean square displacement (R2( t ) )  of the triangle’s CM (full curve) and (n(t ) ) ,  the 
average number of jumps (broken WNE) during time t. The results for the exponential WID, 
equation (1) and for the long-time tailed algebraic m, equation (2) for y = 1.5, 1.1 and 1.01 
(from lop to bMttom). For the exponentid wm both lines coincide, whereas (RZ(r)) and (n(f)) 
differ for the wms of equation (2). 

Figure 2 shows simulation results for the mean squared displacement ( R Z ( t ) )  and for the 
mean overall number of jumps (no))  of the triangle’s CM as a function of time. Both the 
exponential W D ,  equation (1) and also W D s  with long-time tails, equation (2) are analysed 
for a whole series of values of the parameter y .  We note that in the units used and for 
the exponential WD ( R 2 ( i ) )  and (n(r))  coincide and depend linearly on i. For power-law 
WDs the behaviour of ( R 2 ( t ) )  and ( n o ) )  is different: while the mean number ofjumps is 
still proportional to t ,  (RZ(r))  is not. In fact ( R 2 ( f ) )  shows a diffusive behaviour at short 
and at long times, and a subdiffusive behaviour in between. Note that in figure 2 the scales 
are logarithmic and that the different dynamical regimes often stretch over several orders 
of magnitude in time. 

In the caSe of exponential WDs the related RP is a Poisson process, whose events (jumps) 
are uniformly distributed in time. The pooled process (i.e. the process corresponding to the 
superposition of all events) is also a Poisson process, albeit with a correspondingly reduced 
parameter A; this process is statistically indistinguishable from the one in which first the 
pooled Poisson output is generated and then each event is assigned the vertex which jumps. 
For Poisson RP the starting points of consecutive jumps are uncorrelated; furthermore it 
turns out that the dynamics can be decoupled into a spatial and into a temporal part [7]. 
The triangle’s CM performs thus a random walk on the two-dimensional hexagonal lattice 
and its mean squared displacement tums out to be proportional to the average number of 
jumps; i.e. we find 

(n(r)) = 3t/(t) (6) 
at all times. In equation (6) (1) = l / A  is, as before, the mean waiting time between jumps 
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of the same vertex. This yields for the CM’s mean squared displacement: 

where U* = 1 is the mean squared displacement of the CM per jump. The behaviour of the 
CM is diffusive on all time scales, which fact is clearly seen in figure 2, and is due to the 
lack of correlations between consecutive jumps. 

For broad wm such as equation (2), consecutive jumps are correlated. The correlations 
arise from the fact that such WTDs have a memory of their starting time. The behaviour 
of the CM’s motion is then more complex, as may be seen from figure 2, which shows an 
intermediate, subdiffusive regime. Now the short-time regime corresponds to the first jump 
of a single vertex. For this first event the mean squared displacement of the CM is, as before 

(R2( t ) )  = a * ( n ( f ) )  = 3a2ht (7) 

( R 2 ( t ) )  = 3azt / ( t )  = 3a2(y - 1)t (8) 
i.e. a diffusive behaviour. This regime is followed quite quickly by a subdiffusive behaviour. 
In the long-time regime the behaviour is again diffusive, with a much smaller diffusion 
constant than the one in equation (8). In figure 3 we present the values of the diffusion 
-coefficient D in the long-time regime as a function of y - 1. Here we have extended the 
range of y~ to values above two, such that we also studied y = 2.5,3,4,6 and 10. As may be 
verified from figure 3, for large y the diffusion coeficient D is approximately proportional 
to ( y  - 1). while for y --t 1 the diffusion coefficient behaves rather as D o( ( y  - 
In what follows we will explain this type of behaviour for y + 1,  and will estimate the 
magnitude of D. Note that y = 1 is marginal; for y c 1 no long-time diffusive region 
exists. 

Y I 
-2 -1 0 1 

Figure9 Long-time diffusion coefficient D as a function of + I ) .  Note the double logarithmic 
scales. The full curve represents equation (U) with k = 8, see text for debils. The broken 
curve has a slope of 3, the dotted curve a slope of I ;  they indicate limiting behaviours. 

Our approach to understanding the triangle’s motion under broad WTD is based on the 
observation that the main effect governing the slow long-time diffusion is pinning: a large 
scale motion of the triangle is only possible if all its three vertices move; otherwise the 
triangle only rotates around its pinned vertex, a fact which leads to no translation. 

4. The nature of the long-time behaviour 

To clarifiy the overall character of the motion we present in figure 4 a realization of a 
sequence of jumps for the three vertices generated for the WTD of equation (2) with y = 1.3. 
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Figure 4. A sequence of jumps of three vertices, generated by the m. equation (2) for 
y = 1.3. Here SI represents steps of vertex 1, rj denotes a return of vertex j .  Note the strong 
clusterintion of jumps. 

According to OUT numerical procedure, we have computed the independent renewal times 
for the three vertices, and denoted the corresponding RPs by 1, 2 and 3. Then we have 
arranged the jump times in ascending order and printed the sequence of the vertices which 
move. The first feature evident from figure 4 is the tendency of jumps of the same vertex 
to cluster together. Evidently, such clusters let a vertex jump back and forth, with no net 
diffusive effect. One may believe that this is the main reason of slowing down the diffusion. 
However, one can show that clusterization alone is not sufficient to explain the small values 
of D and the D cx (y  - 1)3 dependence. As mentioned above, for an overall diffusive 
movement of the triangle during longer time intervals it is necessary that all vertices jump 
during this time, otherwise there occur only rotations. We refer to this situation as pinning. 
Note that for a dumbbell (dimer) there is no difference between clusterization and pinning, 
while for systems built out of three or more random walkers clusterization and pinning 
differ, so that the pinning period of one vertex can include several clusters of jumps of the 
other vertices. 

To take into account pinning effects we now define an (effective) step to be a shortest 
sequence of the events, which starts with a jump of 1 (or the beginning of such a cluster 
of jumps) and ends just before a jump of 1, such that in this interval both 2 and 3 have 
had at least one jump each. An example for a step is the sequence , . .11211132231 . . . . 
In figure 4 we have indicated by SI several steps. The end of the step (iump of 1) is the 
starting point of the next step. Note that steps cover the set of jumps completely, so that 
each jump belongs to exactly one step. We disregard further correlations by considering 
displacements taking place during consecutive steps to be independent of each other. One 
can then estimate (T), the mean duration of a step, and obtain from it an estimate for D in 
the form D = b2/ (T)  where b2 is the mean squared displacement of the CM per step. As 
we proceed to show the D c( ( y  - lI3 dependence stems directly from the behaviour of 
( T ) .  

Our next task is then to estimate ( T ) .  Now, a step is a rather complicated sequence of 
jumps and it is not simple to estimate ( T )  straightforwardly. Nevertheless one can show 
that the number of steps during a given time interval cart be estimated from below and from 
above through some other sequences of a much simpler nature, which we call returns. We 
denote by a return of, say vertex 1, a situation in which between two consecutive jumps 
of vertex 1 there occur jumps of both the two other vertices. Examples for returns are 
. . . 1231.. . or . . . 1223321.. . . Several returns are indicated exemplarily in figure 4. Note 
that retums do not cover the full set of events; e.g. the series of jumps . . ,121.. . does not 
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belong to any return of vertex 1. 
It is evidept that each return of vertex 1 corresponds to a step of the overall process: 

This step begins with some jump of 1 after which either this jump, or the end of a cluster 
of jumps of 1 which follows, is the beginning of the return considered; the step finishes 
with the end of the return (e.g. the first step in figure 4). On the other hand there are steps 
containing no returns of vertex 1 (for example, the second step in figure 4 includes no 
returns of 1). Therefore, the overall mean number of steps within a long time interval t is 
not smaller than the number of returns: (n,&)) > (n&)). Furthermore, one can note that 
the end of each step of 1 lies either within a return of 2 or within a retnm of 3. To show this 
one must notice the following: The step of 1 ends with a jump of 1 which was preceded by 
a jump of either 2 or 3. Let us assume for simplicity that it was 2. The structure around the 
end of the step 1 is then . . . 3 x x x 2 1 x x x 3 . .  ., where x denotes either 1 or 2 (or is empty). 
This structure shows that 1 lies now within a return of 3. This consideration shows that 
the overall number of steps cannot be larger than the number of returns of 2 and 3, i.e. that 
(n,(t)) 6 Z(n,(t)) holds. In summary we have 

(9) 

Let us now calculate (n,(t))  for some vertex within a given time interval f .  This 
number is equal to p ( n ( t ) ) ,  with (n(2)) = t / ( t )  being the mean number of jumps during t 
of the vertex considered, and p being the probability that an arbitrary jump of this vertex 
corresponds to the beginning of a return. This probability is given by 

( n A ) )  4 (n&) 6 W,(t)). 

m 

P = dtllr(r)[l - @i(t)I2 (10) 

where, parallelling equation (3), we have introduced @ I  (f) = Jm dt“ll.1 (t’). Equation (10) 
means that both 2 and 3 jump before 1 jumps again. For algebraic WTDs equation (10) 
yields 

which with ( t )  = ( y  - l)-’, see discussions after equation (2), leads to 

Together with the inequalities (9) it follows that (n,?(t)) depends linearly on t and that it 
goes as (y-1)’ for y -+ 1. Now ( T )  is given by (T) a t / (ns ( t ) )  and thus (T) o( ( ~ - l ) - ~  
for y + 1. 

To conclude that D goes as (y  - I)’ for y + 1 we need an estimate for bZ, the mean 
squared displacement of the CM per step. Now b2 is bounded from above: The possible 
positions of the triangle’s CM after one step (where the step always starts with a jump of 
1 )  are shown in figure 1. The maximal displacement per step is then v%, which gives an 
upper bound for b2 of b2 < 13. Evidently, the mean squared displacement achieved i n  a 
step depends on the sequence of jumps. If we now average over all positions in figure 1 
as being equally possible, we arrive at b2 = 23/4. This value is close to the results of the 
numerical simulations. 

We tum now to the simulation results and approximate D for y e 2 through 
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where the numerical factor k is taken to be a fitting parameter. For 1 c y c 2 we establish 
that equation (13) is an excellent choice: We find that k is statistically indistinguishable 
from a constant and that k = 8.0 f 0.2. In figure 3 the full curve is equation (13) with 
k = 8. In fact expression (13) works surprisingly well even for 2 c y c 10. Equation (13) 
can he reinterpreted in the form D = ~ k ( n & ) ) / t .  This form is very adequate also for the 
Poisson process, for which equation (IO) gives p r  = l j3; with D = 3 this leads to k = 9. 

Comparing the results obtained for a triangle with those of [3] for a dumbbell (i.e. for 
two vertices) allows us to draw some conclusions. First, in the case of a dumbbell, each 
step corresponds to a sequence of two clusters (one of vertex 1 and one of vertex 2) and 
to exactly one return of each vertex. The mean duration of a step is then proportional to 
( T )  = p- ' (r)  = (2y - l)/(y - see the calculation below for an arbitrary number N of 
vertices. In this case D goes as ( y  -~l)-' for y + 1, which coincides with the findings of 
[3] equation (12). 

If one considers a system of more than three random walkers, one can apply the same 
considerations as above. The generalization of equation (1 1) for an arbitrary number of 
vertices N now reads: 

I M Sokolov et a1 

p = l m d t y ( l  + t ) - I -y ( l  - (1 + r ) l - Y ) N - I  = (N - l)!(y - 
(2y - iX3Y - 2 ) .  . . ( N ~  - N + 1)' 

To prove the last relation one changes the variable of integration in equation (14) to z = r+ 1 
and performs the partial integration: 

The change of variable y = zI-Y reduces the last integral to the standard form of the beta 
function: 

see equation (1.191.3) of [15]. Representing the beta function in terms of r-functions, 
B(P, 0) = - r(lr)r(") (equation (8.384) of [15]), one obtains then 

which reduces to equation (14) by using the recurrence formula r(x+l) = x r ( x )  repeatedly. 
As an extension of our considerations for the case of the triangle, we obtain for N 

vertices that the mean number of steps and that of returns are related by (n,(t))  < (n,(r)) < 
(N - I)(nr(f)). Therefore one can again surmise that the long-time diffusion coefficient 
D of a system of N random walkers connected by bonds goes as ( y  - for y + 1. 
These considerations show that pinning effects are of much importance for large systems 
of coupled random walkers, such as polymer chains. 

5. Conclusions 

In this article we have analysed the motion of a rigid triangle; i.e. of a system of three 
random walkers coupled through holonomic constraints; the vertices jump according to 



Continuous-time random walk of a rigid triangle 6653 

CTRWS with either exponential or algebraic WTDs. For exponential WDS the system shows 
a simple diffusive behaviow. For algebraic WTDS the behaviour is much more complex due 
to the coupling between the temporal and the spatial aspects. In this case one observes two 
diffusive regimes (at short and long times) with a broad crossover region in between. The 
long-time diffusion coefficient is much smaller than the short-time one. The reason for the 
slow overall motion at long times is pinning: there is no overall translation of the triangle 
unless all three vertices move. We have shown that a simple approximation which takes 
into account pinning is in very good agreement with the numerical simulations for D and 
captures the most important statistical features of the system’s behaviour. The generalization 
of our approach to the case of more than three vertices shows that the importance of pinning 
increases with the number of particles involved. 
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